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The general goal of the work has been to develop the techniques needed to process queries,
expressed as logic programs, efficiently. A system called NAIL was developed, by mid-1989,
to test out our ideas. It was fully declarative, which we found an interesting challenge,
and its implementation exposed a number of issues that lead to important new ideas and
research. However, the full declarativeness proved too much of a burden in writing some
applications that we hoped would be facilitated by a logic/database language, and NAIL
was abandoned in favor of a new language, called GLUE, that is logical, but that allows
for control-flow, sets as data values, and aggregation operators such as sum or average.
NAIL now serves as the view facility for GLUE, and we are in the process of writing a
NAIL-to-GLUE translator that -will offer boih the nondeclarative capabilities of GLUE and
the declarative capabilities of NAIL, whichever is more appropriate in a given situation.
The current status of the GLUE/NAIL implementation is as follows.

1.  Geoff Phipps is the principal designer of GLUE, and has a “quick-and-dirty” imple-
mentation, in which GLUE programs are translated to Prolog and executed. Details
of the language appear ir Phipps et al. (1990]. There are a number of novel solutions
to common problems in logic languages. For example, we store sets by name, rather
than value, an approach that has made set processing awkward in logic languages like
LDL or Prolog. There is a diction (caret) for returning relations from function calls
in a way that prevents them from dangling. Eventually, Phipps will rewrite the trans-
lator to produce IGLOO, an intermediate form that will be executed more efficiently
than the Prolog output.

2. Marcia Derr is working on the implementation of IGLOO, the intermediate form. She
has ideas for dynamic creation of index structures and ordering of subgoals that will
make GLUE execution much faster than other logic languages.

3. Ashish Gupta is working on the translation of NAIL, the fully-declarative view facility,
into GLUE. The problems he encounters involve how general N AIL rules can be. For
example, when negated subgoals and/or aggregation are allowed, sometimes the rules
do not have a natural meaning. or it becomes impossible to apply the “magic sets”

transformation (described below) to produce an efficient GLUE program from NAIL
rules.

4. David Chang and Kathleen Fi-iier. two undergraduates, are working on applications
- programs in GLUE. This work !..:- been a significant help in focusing the design of the
language. Chang’s work invol. - cconomic theory, in particular deducing dependence
relationships among parameter- «f cconomic activity, and Fisher’s involves simulating

and controlling the flow of autcmnobiles through a grid of streets and traffic lights.

It is interesting to compare the performance of a program written by Chang in LDL
before the early GLUE implementation became available, with his later implementation in
GLUE. The problem was a simple one: matrix inversc by Ganssian climunation. His LDL
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program took one hour to compile on a SUN-3. His GLUE program compiles in a minute
on a slower machine. Moreover, adjusting for differences in machine speed, the GLUE
version executes faster, even though it is really executing Prolog code. And we have not
yet begun to get serious about efficiency, being happy at this stage to experiment with
language dictions.

Magic-Sets

This technique for rewriting rules is probably the most important idea that has come up
in the study of logical query optimization. It allows us to take a set of logical rules and a
query, and rewrite the rules so that they can be evaluated bottom-up (by forward chaining,
or reasoning from rule body to rule head) as fast as the best top-down (backward-chaining,
or goal-directed search, as in Prolog) algorithm. Moreover, the rules need be rewritten only
once for each query form, {pattern of bound and free arguments in a predicate), rather
than for each query. Since bottom-up evaluation is used, we are not subject to the pitfalls
of top-down evaluation, such as left-recursive loops. However, since the new rules simulate
a top-down derivation (in much the way an LR parser simulates an LL parser in the LR
parser’s sets of items), we are not subject to the typical bottom-up problem of proving too
many facts that are irrelevant to the query.

Example 1: If presented with the transitive closure rules (using Prolog notation)

path(X,Y) :- arc(X,Y).
path(X,Y) :- arc(X,Z) & path(Z,Y).

and the query path(0, W), i.e., “what nodes W can I reach from node 0?”, one possible
magic-sets transformation would construct the rules

m_path(0).
m_path(Z) :- m_path(X) & arc(X,2).

path(X,Y) :- m_path(X) & arc(X,Y).
path(X,Y) :- m_path(X) & arc(X,Z) & path(Z,Y).

The predicate m_path (“magic path”) represents the set of nodes v that are relevant,
in the sense that a Prolog-like search starting with goal path(0,W) would call a subgoal
path(S,T), where S is a set of nodes including v. Then, m_path is used in the last two
rules to restrict the set of path facts that we are allowed to infer. Note that the third and
fourth rules above are the original rules with the magic predicate added to the bodies. (]

The original magic-sets idea was an early result of the NAIL project, dating from
1986. A recent contribution to the theory, supported by the grant is Ullman [1989], which
shows that for datalog (Horn-clauses with no function symbols), one can do a magic-sets
transformation that needs no nonground tuples, and yet is guaranteed to perform at least
as well as any top-down method.

The idea has been extended to allow constraints on arguments (the original techniques
assumed only that an argument could be bound to a sei of constants, not constrained to an
infinite set, as by X > 5). The paper by Mumick, Finkelstein, Pirahesh, and Ramakrishnan
(1990a] describes this advance. Mumick, Pirahesh, and Ramakrishnan [1990] shows how
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magic-sets extends to relations in which duplicates are significant (i.e., you must count the
number of times a tuple appears) and/or certain kinds of aggregation as well.

Mumick, Finkelstein, Pirahesh, and Ramakrishnan [1990b] tells of the implementation
of magic sets in IBM’s experimental Starburst DBMS and gives some experimental evidence
that the method is superior not only for recursive queries, for which it was intended, but for
nonrecursive queries as well. A further extension by Ken Ross is described in the section
on well-founded semantics.

Beyond Magic-Sets

There are certain situations in which specialized techniques give better results than magic-
sets for rules to which they apply. Several years ago, Jeff Naughton began a study of left-
and right-linear recursions, under the project. These methods applied initially to rules
that were similar to transitive closure. Recently, the techniques have been generalized to
provide linear-time algorithms for a large class of linear rules (that is, rules with only one
recursive subgoal), in Naughton, Ramakrishnan, Sagiv, and Ullman [1989a], and even to
some rules that are nonlinear, in Naughton, Ramakrishnan, Sagiv, and Ullman [1989b].

In a different vein, Sagiv {1990] has explored the technique of envelopes, which are
similar to magic-sets, in that they attempt to restrict the set of facts that one must deal
with during the answering of a query. However, there are examples wher envelopes give
better results than magic-sets, as well as examples where the opposite is true. Moreover,
Sagiv shows how one can combine envelopes and magic sets, or apply the enveloping
transformation several times, to get successive improvements. That is, we can apply several
transformations to rules, one at a time, and get better rules at each step. This area is
intriguing, and not yet fully developed.

Logic with Negated Subgoals

When we try to implement logical rules with negated subgoals, we run up against the
problem that there usually exists more than one minimal fixed point, and we need to
select one such as the “meaning” of the rules.

Example 2: Consider the rules

r(X) :- p(X) & not q(X).
s(X) :- p(X) & not r(X).

Suppose that p is defined by a database relation and currently contains the tuples 1 and
2. Also. ¢ is a database relation and currently has only the tuple 1. Then one minimal
model of these rules and data is r = {2} and s = {1}. However, there is another minimal
model, where » = {1,2} and s = (. The first of these is intuitivel; the “correct” model,
since there does not seem to be any cxplanation for why we should believe (1) is true. [J

The first attempt to resolve this ambiguity was by restricting to “stratified” rules.
where negation could not be wrapped inside a recursion. In 1986, Allen Van Gelder,
working on NAIL, and independently. Apt. Blair, and Walker at IBM, defined stratified
logic programs to be those for which we can partition their predicates into strata, such
that a rule for a stratum 7 predicate can only involve unnegated predicates of stratum i

.
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and lower, and negated predicates only of lower strata. For instance, the rules of Example
2 are stratified, with p and ¢ in stratum 0, = in stratum 1, and s in stratum 2.

To find the fixed point of a stratified program, we evaluate predicates in order of their
strata. Thus, in Example 2, we first evaluate » = {2}, and only then do we evaluate s,
using this value of » in the second rule, to get s = {1}. That is the intuitively correct fixed
point.

However, there are examples of logic programs in which recursion and negation are
intimately connected, and these programs are not stratified. A key step was taken by Van
Gelder, Ken Ross, and John Schlipf in 1988. They proposed tue well-founded semantics,
which gives a reasonable three-valued (true, false, unknown) model for any logic program.
The intuitive idea is that there are two ways in which we can draw conclusions.

1. Ordinary deduction. If we instantiate a rule (replace variables by constants), and we
find that all the unnegated subgoals of the body are known to be true and all the
negated subgoals are known to be false, then we may conclude that the head is true.

2. Unfounded sets. Suppose we have a collection U of instantiated predicates such that
every instantiated rule with a member of U in the head has the property that either

a) There is a fatal problem with some subgoal: either a positive subgoal is known
false or a negative subgoal is known true, or
b) There is a positive subgoal of the rule that isin U.

Then there is no way we could ever prove a member of U by (1), because some other
member of U would have to be proved first. Under the well-founded semantics, we
conclude every p in U is false.

Example 3: An instructive example is the rule
win(X) :- move(X,Y) & not win(Y).

That is, a stalemate position, with no possible move, is a loss, and one can win by selecting
a move that puts your opponent in a losing position. The well-founded semantics does
exactly what we intuitively expect. If best play by both sides from board X leads to a
win for the first player, then win{Y') is made true. Ii the first player is forced to lose, then
win(X) is made false. And if best play leads to an infinite sequence of moves, with no
resolution, then win(X') will not be found true or false, and it is given the value “unknown.”

O

There has been some significan® development of the well-founded semantics, with an
eye toward discovering efficient aiv .- :lims for answering queries according to this inter-
pretation of rules. For instance, v+ ..:id like to ask of the rule in Example 3, the query
win(43), i.e., “is board 43 a win”" .- | get the answer quickly. Ross {1989a] gave such a
top-down evaluaticn algorithm.© .- - 1123b extends the idea to disjunctive rules, where
the head can be the “or” of two «r i .re atoms. Also. Ross :11990a] attempts to incorpo-
rate not anlr negalion, but aggreg»' ..., i functions like min or average applied to columns
of a relation). For a subclass called :iodularly stratified, he shows that it 1s possible to

! Note that the original paper on well-{ .unded semantics does not give an algorithm for the general
case, just a definition.
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apply a magic-sets transformation to rules with aggregation and get efficient evaluation
thereby. Finally, Ross [1990b} examines what happens when the well-founded semantics
and also the generalized stable-mode] semantics of Gelfond and Lifschitz are applied to
HiLog programs.?

Applications of Conjunctive Query Containment

Conjunctive queries are the bodies of datalog rules, that is, the logical “and” of atoms.
Any datalog program and query can be expanded into an infinite set of conjunctive queries
whose union is the answer to the query. Sagiv, supported by the project in 1987, showed
how one can test whether the result of a given conjunctive query is contained in the result
of a datalog program and query. This test was applied in Ramakrishnan, Sagiv, Ullman,
and Vardi [1989] to give a test for commutativity of linear rules (rules with at most one
recursive subgoal in their bodies) that is more general than any previously considered.
Incidentally, the motivation for studying rule commutativity is that when two linear rules
r, and r, for a predicate p commute, one can evaluate p by first closing the database
under r; and then under r,. Using some evaluation strategies like “counting,” we can
reduce exponential work to polynomial work.

Plambeck [1990] looks at the general question of algebraic equivalences among rule ,
of which commutativity is one important example. He uses some known semigroup theory
to characterize all algebraic identities that can hold for a collection of rules.

Another problem attacked by this theory is “ZYT-linearizability.”® Here, we are
asked to take a nonlinear recursion with two occurrences of the recursive subgoal in one
nonrecursive rule, and replace one of the occurrences of the recursive predicate by the basis
predicate. The motivation for doing so is that linear recursions are often easier to evaluate
than nonlinear recursions. Conversely, if we are executing rules in parallel, we can often
get speedup by replacing a linear recursion by an equivalent nonlinear recursion; i.e., apply
the ZYT transformation in reverse.

Example 4: The simplest example is bilinear transitive closure,

path(X,Y) :- arc(X,Y).
path(X,Y) :- path(X,Z) & path(Z,Y).

which is equivalent to the linear recursion of Example 1. That is, we replace the first path
subgoal by the identical subgoal with predicate arc, the basis predicate. (]

Saraiya [1989] gave a polynomial-time test for ZYT-linearizability in the case that the
recursive rule does not have two subgoals with the same nonrecursive predicate. Saraiya
{1990a)] gives efficient tests for a number of properties of rules with nonrepeating names
among the nonrecursive subgoals, while Saraiya [1990b] shows that it is not possible to
extend these results significantly. since the problem becomes ANP-hard. Ramakrishnan
Sagiv, Ullman, and Vardi {1989 gives the broadest known test for ZY T-linearizability that
does not limit the form of the nonrecursive subgoals.

2 HiLog is a logic proposed by Chen. Kifer. and \Varren, that incorporates sets and other second-order
logical features in a language with a first-order semantics.

3 After W. Zhang, C. T. Yu, and D. Troy. who first proposed an algorithm to decide this question.
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I1/0 Complexity of Transitive Closure

When computing a large transitive closure, one that cannot fit in main memory, the critical
cost is often the amount of data that must be moved between secondary and main storage.
We can parametrize the problem by letting n be the number of nodes, e the number of
arcs, and s the number of facts that will fit in main memory at one time. We assume
n < s < e < n?, because otherwise the best algorithm is obvious. About three years
ago, there was published in SIGMOD an algorithm for handling transitive closure using
n*/5 1/0, that is, moving O(n*/s) facts across the boundary between main and secondary
memory. Interestingly, way back in 1974, Coffman and McKellar published in JACM an
algorithm taking only n®/4/s I/O, which suggests that people are not learning from history.

Ullman and Yannakakis [1990] looked at the inherent complexity of the problem to
see if there were even better algorithms. We showed, however, that n3/,/s I/0 is optimal
for dense graphs (e = O(n?)), as long as the algorithm is “standard,” in the sense that it
only infers path facts like path( A, B) if it has the three arc or path facts involving nodes
A, B, and some third node C in main memory simultaneously.

We then looked at how well you could do if you assumed the graph is sparse, i.e., €
much less than n%. There, we show that I/O equal to n?,/e/s is sufficient. Moreover, any
standard algorithm requires this much I/0.
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